Parallel one-versus-rest SVM training on the GPU
نویسندگان
چکیده
Linear SVMs are a popular choice of binary classifier. It is often necessary to train many different classifiers on a multiclass dataset in a one-versus-rest fashion, and this for several values of the regularization constant. We propose to harness GPU parallelism by training as many classifiers as possible at the same time. We optimize the primal L2-loss SVM objective using the conjugate gradient method, with an adapted backtracking line search strategy. We compared our approach to liblinear and achieved speedups of up to 17 times on our available hardware.
منابع مشابه
Parallel multitask cross validation for Support Vector Machine using GPU
The Support Vector Machine (SVM) is an efficient tool in machine learning with high accuracy performance. However, in order to achieve the highest accuracy performance, n-fold cross validation is commonly used to identify the best hyperparameters for SVM. This becomes a weak point of SVM due to the extremely long training time for various hyperparameters of different kernel functions. In this p...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملCusvm: a Cuda Implementation of Support Vector Classification and Regression
This paper presents cuSVM, a software package for high-speed Support Vector Machine (SVM) training and prediction that exploits the massively parallel processing power of Graphics Processors (GPUs). cuSVM is written in NVIDIA’s CUDA C-language GPU programming environment, includes implementations of both classification and regression, and performs SVM training (prediction) at 13-73 (22-172) tim...
متن کاملHigh Dimensional Image Categorization
We are interested in varying the vocabulary size in the image categorization task with a bag-of-visual-words to investigate its influence on the classification accuracy in two cases: in the first one, both the test-set and the training set contains the same objects (with only different view points in the test-set) and the second one where objects in the test-set do not appear at all in the trai...
متن کاملIsolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...
متن کامل